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Introduction

Qualitative measurements of adhesion or binding forces cartbe accomplished, for

example, by using the reflection coefficient of an ultrasound or by using thermal waves

(Light and Kwun, 1989, Achenbach and Parikh, 1991, and Bostrom and wickham, 1991).

However, a quantitative determination of binding forces is rather difficult. It has been

observed that higher harmonics of the fundamental frequency are generated when an

ultrasound passes through a nonlinear material. It seems that such non-linearity can be

effectively used to characterize the bond strength. Several theories have been developed

to model this nonlinear effect (Adler and Nagy, 1991; Achenbach and Parikh, 1991;

Parikh and Achenbach, 1992; and Hirose and Kitahara, 1992; Anastasi and Roberts,

1992). Based on a microscopic description of the nonlinear interface binding force, a

quantitative method was presented by Pangraz and Arnold (1994). Recently, Tang,

Cheng and Achenbach (1997) made a comparison between the experimental and
simulated results based on this theoretical model. A water immersion mode-converted

shear wave through-transmission setup was used by Berndt and Green (1997) to analyze

the nonlinear acoustic behavior of the adhesive bond.

In this project, the nonlinear responses of an adhesive joint was investigated

through transmission tests of ultrasonic wave and analyzed by the finite element

simulations. The higher order harmonics were obtained in the tests. It is found that the

amplitude of higher harmonics increases as the aging increases, especially the 3 rd order

harmonics. Results from the numerical simulation show that the material nonlinearity

does indeed generate higher order harmonics. In particular, the elastic-perfect plastic

behavior generates significant 3 rdand 5thorder harmonics.

Through Transmission Test

Through transmission tests were conducted on the bond samples provided by

NASA. The objective is to correlate the aging time of the bond joint with the generation

of higher harmonics in the through transmission tests. Details of the test and some major

results are described below.

Experimental Setup
A block diagram of the experimental set up is shown in Fig 1. A 40 cycle time-

harmonic signal of 2MHz was generated by a Waveteck function generator (the limit

frequency is 50MHz). The signal was amplified by a high voltage amplifier (ENT, DC ~



10MHz,50dB)to obtain a high amplitude driving voltage of the generating transducer.

Typical output signals of the function generator and the amplifier are shown in Fig.2.

The highest output voltage of the amplifier used in the experiments was 350 volts. A

narrow-band contact PZT transducer was used as the generating transducer. Its center

frequency is 2MHz. The incident ultrasonic wave from the generating transducer was

transmitted perpendicularly through the adhesive layer. The receiver is a broad-band

contact PZT transducer with 2MHz center frequency. The output signalJ(t) of the

receiver was recorded by an oscilloscope (Techtronix, 150MH) and analyzed on a

personal computer.
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Fig.1 Experimental setup.
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Fig.2 Typical output signals of the function generator and the amplifier.

The sample and the two contact PZT transducers were fixed by two aluminum

plates with a cavity on each side, respectively, to hold the transducers at the same

position (see Fig. 3). For efficient signal generation, the two transducers can be held

tightly by adjusting the four bolts.

Another setup (Fig.4) was tried with a single crystal quartz transducer as the

sending probe. A laser interferometer was used as the receiver. It is a broad-band green

laser system and the frequency response is from 0 to 10MHz. Due to the inefficiency of

the single crystal quartz transducer, we did not obtain high enough ultrasound signal to

drive the interface into the nonlinear range. More work is need on this technique for year

3.
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Fig. 3 Adhesivebondsampleandtheholdingof thetransducers.

Fig.4 Singlecrystal quartz transducer.



Experimental Results

A typical sample received from NASA is shown in Fig. 5. Two aluminum plates

were bonded together by an adhesive layer. The materials are given below:

Adherend Material: AL2024

Adhesive: FM-300 Sheet Form (carder - nylon material)

Bonded Area: 2.0" x 1.0" in overlap, 0.003" in thickness.
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Fig.5 Adhesive bond sample geometry

The ultrasound signal/(t) received by the receiver were recorded along with the

increasing driving voltages of the sending transducer. Then, the data were analyzed by

the Fast Fourier Transform to obtain the frequency spectra,

QO

F(og) = _f (t)exp(iogt)dt . (1)

The amplitude of the fundamental frequency and the higher harmonic components are

defined as

A, = F(nco0) I , n = 1,2,3... (2)

where co0 = 2MHz.

30"

q.) 10"
"0

.__ o

E .lO

Amplifier Output

.30"

0.0

0.20"

0,15"

o.n_'

2 3

o o = 2MHz

4 5 6 7



Receiver Output

6"

2"

O"

-2

.4

.6

0.0 5._.6

0.20

0.15

0.05

0._

cao = 2MHz

3 4 5 6 7 8

Fig. 6 Input and received signals and their frequency spectra

Examples of the output signals from the amplifier and the receiver are given in

Fig. 6. Their frequency spectra are given in the same figure. It is seen that higher

harmonic components were indeed generated by the nonlinear responses of the adhesive

bond sample.
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Two samples were tested in the condition as received. Then they were placed in a

oven for dry aging at 400°F for 30 hours, 60 hours, and 100 hours, respectively. At each

aging increment, the samples were taken out of the oven and ultrasonic through

transmission tests were performed. The resulted d r as functions of the driving voltage of

the sending probe for the two samples A and D are shown in Fig. 7 and Fig. 8,

respectively. All results have been normalized by the amplitude of the fundamental

component at the lowest driving voltage.

From Figs. 7 - 8, it is observed that (1) the fundamental component is the

dominant one. Its amplitude is much higher than other components, (2) aging increases

the magnitude ofhi_her order harmonics of the fundamental frequency, and (3) The

magnitude of the 3r°harmonics seems to correlate with aging time fairly well.

Finite Element Analysis

To understand the nonlinear effects of the adhesive layer, transmission through an

adhesive layer was analyzed by the finite element method. Elastic-perfect plastic

constitutive law was used for the adhesive. The input signals of 0.SMHz and 2MHz
are considered.

The 1-D numerical model is shown in Fig. 9. A 5 cycle harmonic load of 0.5MHz

or 2MHz was applied, respectively, as the input. The thickness of the adhesive layer is

0.003in, which is expressed as k2` Fig. 9, where 2` is the wavelength of the input signal

and k is the ratio of the adhesive thickness and the wavelength. Here 2. = 13.036mm for

0.5MHz and 2` = 3.259mm for 2MHz. The corresponding k is 0.0006 and 0.0234. The

adhesive layer is much thinner than the aluminum plate. So, the thickness of aluminum



parts can be assumed as inf'mite in the finite element analysis. The stress-strain relations

are shown in Fig.10 for the aluminum and the adhesive, respectively.
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Fig. 10 Stress-strain relations of A1 and FM-73

Numerical results for the ultrasonic signals at three different points in the aluminum and

the adhesive layer for the two loading cases are given in Fig. 11 and Fig. 12, respectively.
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It is seen from Fig. 11 and Fig. 12 that the amplitude of the incident wave

decreased significantly after passing through the adhesive layer. In the meantime, the

yielding of the adhesive material indeed complicated the transmitted ultrasonic waves.

In order to see if there is any higher harmonic component caused by the material

nonlinearly, the responses and their spectra at point C for the elastic and elastic-perfect

plastic cases are compared in Fig. 13 and Fig. 14 for the two loading cases, respectively.

The data are normalized by the magnitude of the fundamental component of their spectra.
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It is seen clearly from Fig. 13 and Fig. 14 that the higher order harmonics are

generated by the non-linearity of the adhesive material, which is the plastic deformation

of the adhesive material. Especially, significant 3 rd and 5 th order harmonics are

generated. The magnitude of the 3raorder harmonics is about 1/25 of the fundamental

one. However, the 2 ndharmonic was not predicted by the FEM calculation. These

numerical results seem to confirm what was observed experimentally, as described in the

previous section.

Summary

The nonlinear responses of an adhesive joint was analyzed by the through

transmission tests of ultrasonic wave and the finite element simulations. Two samples

provided by NASA have been tested as received and after the accelerated temperature

aging at 400°F for various periods of time. In these tests, a 40-cycles harmonic signal

was generated by a 2MHz narrow-band PZT as the input. The output is received by a

2MHz broadband PZT. Due to material non-linearity in the adhesive caused by aging,

higher order harmonics of the fundamental frequency is generated as the wave passes

through the adhesive layer. The experimental results show that aging increases the

magnitude of higher order harmonics of the fundamental frequency and the magnitude of

the 3rd harmonic seems to correlates with aging time fairly well. To model the nonlinear

effect of the adhesive layer, transmission through an adhesive joint was analyzed by the

finite element method. Elastic-perfect plastic constitutional relation was used for the

adhesive material. Results from the numerical simulation show that material nonlinearity

does indeed generate higher order harmonics. In particular, the elastic-perfect plastic

material behavior generates significant 3 rdand 5th harmonics.
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